A Brainy Robot
University of Reading scientists have developed a robot controlled by a biological brain formed from cultured neurons. And this is a world’s premiere. Other research teams have tried to control robots with ‘brains,’ but there was always a computer in the loop. This new project is the first one to examine ‘how memories manifest themselves in the brain, and how a brain stores specific pieces of data.’ As life expectancy is increasing in most countries, this new research could provide insights into how the brain works and help aging people. In fact, the main goal of this project is to understand better the development of diseases and disorders which affect the brain such as Alzheimer or Parkinson diseases. It’s interesting to note that this project is being led by Professor Kevin Warwick, who became famous in 1998 when a silicon chip was implanted in his arm to allow a computer to monitor him in order to assess the latest technology for use with the disabled. But read more…
Now, let’s look at these biological brains for robots. “The robot’s biological brain is made up of cultured neurons which are placed onto a multi electrode array (MEA). The MEA is a dish with approximately 60 electrodes which pick up the electrical signals generated by the cells. This is then used to drive the movement of the robot. Every time the robot nears an object, signals are directed to stimulate the brain by means of the electrodes. In response, the brain’s output is used to drive the wheels of the robot, left and right, so that it moves around in an attempt to avoid hitting objects. The robot has no additional control from a human or a computer, its sole means of control is from its own brain.”
Impressive, isn’t? The team is now working on “how memories manifest themselves in the brain when the robot revisits familiar territory,” hoping to help people affected by Alzheimer’s disease. Here is a quote from Warwick about this project. “This new research is tremendously exciting as firstly the biological brain controls its own moving robot body, and secondly it will enable us to investigate how the brain learns and memorises its experiences. This research will move our understanding forward of how brains work, and could have a profound effect on many areas of science and medicine.”
This project has been recently presented during the European Robotics Symposium 2008 (EUROS 2008) held in Prague, Czech Republic, on March 26-27, 2008. The title of the paper accepted for publication was “Architecture for Living Neuronal Cell Control of a Mobile Robot,” while Warwick’s keynote talk was named “Robots with Biological Brains and Humans with Part Machine Brains.”
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home